

e16 - connection diagram

Revision History

Date	Version	Description
14/01/2022	1.0	First version of document

Acronyms

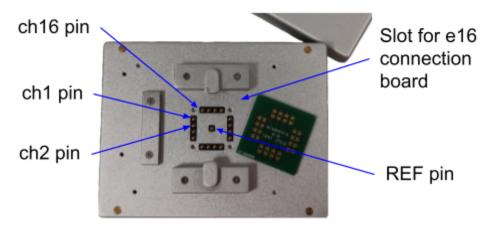
e16: Elements 16 channels amplifier.

ch#: input pins.

GND: ground. The potential of the Faraday cage.

REF: reference.

DUT: device under test. Usually a flow cell with a membrane or a nanopore, but can also be a model cell with resistors and/or capacitors.


BLM: bi-layer membrane. A membrane composed of 2 layers of phospholipids as happens in cell membranes.

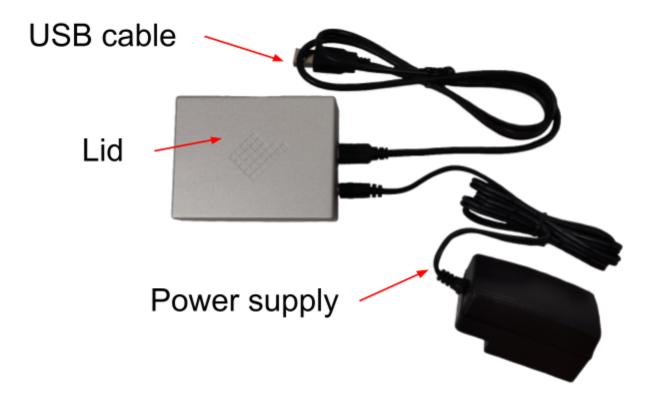
EMI: electro-magnetic interference. Environmental noise affecting the measurements.

Top and rear view

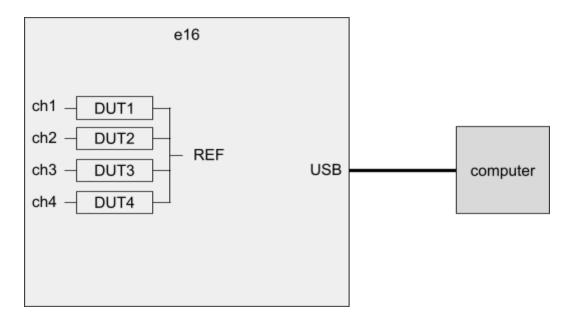
e16 top-side connections

Channel number increases anti-clockwise

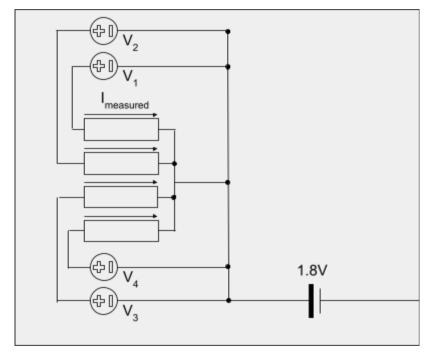
e16 back-side connections



e16 setup


The e16 is directly plugged to the computer via a USB cable and it forms a complete and stand-alone system. The USB cable is used for both data communication, while the power is supplied separately.

The device natively has a miniaturized Faraday cage given by the lid that is directly put on the e16.



The figure below shows how to connect the e16 to the DUT and to the computer (only 4 channels are shown for clarity).

The scheme below shows how the control voltages are applied and the polarity of the acquired currents.

ATTENTION! OBSERVE PRECAUTIONS FOR HANDLING ELECTROSTATIC SENSITIVE DEVICES

Connections best practices

The way the experiment is setup greatly affects the final quality of the measurements, especially in terms of signal to noise ratio.

In the following some best practices are described to help you get the most out of your device.

- Reduce the length of cables connecting the DUT. The longer the cables, the more likely they will collect EMI or create stray capacitances with nearby conductive surfaces (such as the Faraday cage). Ideally the experiment should happen within the device's integrated Faraday cage.
- **Avoid other instruments close to the DUT**. If possible, remove them or keep them off to reduce the noise as much as possible.
- **Select instruments close to the DUT**. If you need to use other instruments close to the DUT the best way to select your setup is to remove all of the instruments and check the noise in this optimal condition. Then, add one instrument at a time and turn it on, to check how much it affects the measurement. These checks should be performed with the e16 configured as it will during the actual experiment (especially same current range and sampling rate).
- **Proper grounding**. If you are using a desktop computer be sure to power it up with a grounded power outlet or power strip. If you are using additional instruments close to the DUT be sure to power them up from a common power outlet or power strip.